Abstract

Background

Computed tomographic pulmonary angiography (CTPA) is the diagnostic standard for confirming pulmonary embolism (PE). Since PE is a life-threatening condition, early diagnosis and treatment are critical to avoid PE-associated morbidity and mortality. However, PE remains subject to misdiagnosis.

Methods

We retrospectively identified 251 CTPAs performed at a tertiary care hospital between January 2018 to January 2021. The scans were classified as positive (n = 55) and negative (n = 196) for PE based on the annotations made by board-certified radiologists. A fully anonymized CT slice served as input for the detection of PE by the 2D segmentation model comprising U-Net architecture with Xception encoder. The diagnostic performance of the model was calculated at both the scan and the slice levels.

Results

The model correctly identified 44 out of 55 scans as positive for PE and 146 out of 196 scans as negative for PE with a sensitivity of 0.80 [95% CI 0.68, 0.89], a specificity of 0.74 [95% CI 0.68, 0.80], and an accuracy of 0.76 [95% CI 0.70, 0.81]. On slice level, 4817 out of 5183 slices were marked as positive for the presence of emboli with a specificity of 0.89 [95% CI 0.88, 0.89], a sensitivity of 0.93 [95% CI 0.92, 0.94], and an accuracy of 0.89 [95% CI 0.887, 0.890]. The model also achieved an AUROC of 0.85 [0.78, 0.90] and 0.94 [0.936, 0.941] at scan level and slice level, respectively for the detection of PE.

Conclusion

The development of an AI model and its use for the identification of pulmonary embolism will support healthcare workers by reducing the rate of missed findings and minimizing the time required to screen the scans.

Details

Title
A deep learning approach for automated diagnosis of pulmonary embolism on computed tomographic pulmonary angiography
Author
Ajmera, Pranav; Kharat, Amit; Seth, Jitesh; Rathi, Snehal; Pant, Richa; Gawali, Manish; Kulkarni, Viraj; Maramraju, Ragamayi; Kedia, Isha; Botchu, Rajesh; Khaladkar, Sanjay
Pages
1-9
Section
Research
Publication year
2022
Publication date
2022
Publisher
BioMed Central
e-ISSN
14712342
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2737747276
Copyright
© 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.