Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Carbon dioxide phase transition blasting (CO2-PB) technology is an effective and economical technology used for breaking rocks. The use of CO2-PB can significantly reduce the vibration damage to surrounding rocks. There is little research on the shockwave generated by the CO2-PB, and simulation can better show the flow field characteristics. In order to clarify the mechanism of its blasting load process, a theoretical analysis and a numerical model were developed to study the flow-field characteristics and the impact pressure of CO2-PB. Our results show that the CO2 absorbs heat from the surrounding environment, producing a significant low-temperature area. The overpressure is significantly lower than the driving gas pressure to the ambient pressure, limiting the maximum over-pressure that can be obtained. When the pressure in CO2-PB reaches 100 MPa, the shockwave is about 4.25 MPa. As the distance increases, the peak value of the shockwave decays rapidly. As the dimensionless distance increases from 1 to 5, the dimensionless overpressure decreases from 1 to 0.23. Under the same blasting pressure, increasing the filling pressure and increasing the filling volume slightly reduce the initial pressure of the shockwave. In the shock stage, strong compression is formed on the surface of the shockwave, resulting in a higher peak pressure value. Meanwhile, the stable pressure is influenced by the target distance, blasting pressure, and CO2-PB length.

Details

Title
On the Factors of Impact Pressure in Supercritical CO2 Phase-Transition Blasting—A Numerical Study
Author
Pu, Chao 1 ; Liu, Zhenjian 2 ; Ge Pu 1 

 A Key Lab Low-Grade Energy Utilization Technol & Syst, Chongqing University, Ministry of Education, Chongqing 400030, China 
 College of Civil Engineering, Yancheng Institute of Technology, Yancheng 221051, China 
First page
8599
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2739436120
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.