Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Dietary (poly)phenol intake derived from the daily consumption of five portions of fruits and vegetables could protect against the development of non-communicable diseases. However, the general population does not meet the recommended intake. Supplementation with (poly)phenol-rich ingredients, within a varied and balanced diet, could help in filling this nutritional gap. This study aimed to validate the proof-of-concept of a (poly)phenolic supplementation developed to enhance the daily consumption of potentially bioactive compounds. Oxxynea® is a (poly)phenol-rich ingredient developed to provide the quantity and the variety corresponding to five-a-day fruit and vegetable consumption. In this double-blind, randomized cross-over study, 10 participants were supplemented with 450 mg of a (poly)phenol-based supplement or a placebo. Pharmacokinetics and urinary excretion profiles were measured for 24 and 48 h, respectively, using UPHLC-MS/MS analysis. The pharmacokinetic profile displayed a triphasic absorption, indicating peaks of circulating metabolites at 1.75 ± 0.25 h, 4.50 ± 0.34 h, 9.50 ± 0.33 h and an average Tmax (time of maximal plasma concentration) of 6.90 ± 0.96 h. Similarly, the urinary profile showed maximum metabolite excretion at 3–6 h, 6–10 h and 14–24 h after supplement consumption. Compared to individual metabolites belonging to different (poly)phenolic subfamilies, the total circulating and excreted metabolites showed a reduced coefficient of variation (CV 38%). The overall bioavailability estimated was 27.4 ± 3.4%. Oxxynea® supplementation may provide a sustained exposure to several (poly)phenolic metabolites and catabolites and reduces the inter-individual variation that could arise from supplementing only one class of (poly)phenol.

Details

Title
Exposure to (Poly)phenol Metabolites after a Fruit and Vegetable Supplement Intake: A Double-Blind, Cross-Over, Randomized Trial
Author
Romain, Cindy 1   VIAFID ORCID Logo  ; Bresciani, Letizia 2   VIAFID ORCID Logo  ; Muralidharan, Jananee 1 ; Mena, Pedro 2   VIAFID ORCID Logo  ; Chung, Linda H 3   VIAFID ORCID Logo  ; Alcaraz, Pedro E 3   VIAFID ORCID Logo  ; Daniele Del Rio 2   VIAFID ORCID Logo  ; Cases, Julien 1   VIAFID ORCID Logo 

 Innovation and Scientific Affairs, Fytexia, 34350 Vendres, France 
 Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy 
 Research Center for High Performance Sport, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain 
First page
4913
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20726643
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2739446797
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.