Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the northern part of the Ningxia Autonomous Region, there are rich lake resources, which are known as the “South of the Seas”. In recent years, the natural evolution of the water system and human activities have caused significant changes in the lake area. In order to fully understand the evolution of lakes in the northern Ningxia Yellow Irrigation Area, Landsat, Sentinel-2 images and ArcGIS were used to extract relevant information, and the cumulative distance level curve and Mann–Kendall trend analysis were used to analyze the trends of each driving factor in depth. The results showed that (1) the lake surface area in the northern Yellow Diversion Irrigation Area showed a significant increasing trend from 1986 to 2019. (2) The annual average temperature in the Ningxia Yellow River Irrigation Area has shown an increasing trend over the past 39 years, and no year has obvious cyclical changes, but in 1998, there was a sudden change in temperature and the temperature began to rise sharply; the annual average precipitation showed an increasing trend with a large variation, and the annual average precipitation from 1980 to 2018 showed a fluctuating increasing trend. (3) There is no significant linear pattern of runoff from upstream during 1986–2015, and it is characterized by fluctuating changes; the precipitation in the Yellow Irrigation Area is much lower than the average level in Ningxia, and it is classified as a typical arid area; the water consumption is all decreasing, but its linear trend is not significant; the most significant impact of the change in the substratum on the water surface is the construction of fields around the lake after 1990, followed by the Lake engineering treatment. (4) The water surface area of the mainstream is significantly and positively correlated with the incoming water from upstream, is significantly and negatively correlated with the area of grassland, and is significantly and positively correlated with the areas of arable land and construction land. The effect of land cover on the water surface area of the mainstream is lower than that on the water surface area other than the mainstream.

Details

Title
Analysis of the Evolution Pattern and Driving Mechanism of Lakes in the Northern Ningxia Yellow Diversion Irrigation Area
Author
Ding, Xueqi 1 ; Zhang, Haitao 2 ; Wang, Zhe 3 ; Shang, Guoxiu 3 ; Huang, Yongzeng 3 ; Li, Hongze 3 

 Center for River and Lake Affairs of Ningxia, Yinchuan 750001, China 
 China Institute of Water Resources and Hydropower Research, Beijing 100038, China 
 Nanjing Hydraulic Research Institute, Nanjing 210029, China 
First page
3658
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2739469821
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.