Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To investigate the dynamic compressive properties and the law of energy dissipation of freeze–thaw-damaged sandstone, static and dynamic compressive experiments were conducted. The influences of the number of freeze–thaw cycles and strain rate on strength characteristics, energy dissipation rate and the fractal dimension characteristics of sandstone were evaluated. Based on the peak energy dissipation rate, a freeze–thaw damage variable was established. The results show that peak strength increases exponentially with strain rate, and there exists a strain rate threshold. When strain rate is below this threshold, the increasing rate of the DIF slows down with the increase in the number of freeze–thaw cycles; when strain rate is higher than this threshold, the increasing rate of the DIF increases with the increase in the number of freeze–thaw cycles. In addition, the fractal dimension increases with the number of freeze–thaw cycles as well as the strain rate. Based on the freeze–thaw damage variable established, the damage degree of sandstone under freeze–thaw cycling can be characterized.

Details

Title
The Dynamic Compressive Properties and Energy Dissipation Law of Sandstone Subjected to Freeze–Thaw Damage
Author
Peng Jia  VIAFID ORCID Logo  ; Mao, Songze; Qian, Yijin; Wang, Qiwei; Lu, Jialiang
First page
3632
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2739471030
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.