Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Riverine dissolved matter reflects geochemical genesis information, which is vital to understand and manage the water environment in a basin. The Ganjing River located in the hinterland of the Three Gorges Reservoir was systematically investigated to analyze the composition and spatial variation of riverine ions, probe the source and influencing factors, and assess the chemical weathering rates and CO2 consumption. The results showed that the total dissolved solid value (473.31 ± 154.87 mg/L) with the type of “HCO3–Ca2+” was higher than that of the global rivers’ average. The hydrochemical parameters were relatively stable in the lower reservoir area of the Ganjing River, which was largely influenced by the backwater of Three Gorges Reservoir. The carbonate weathering source contributed 69.63% of TDS (Total dissolved solids), which generally dominated the hydrochemical characteristics. The contribution rates of atmospheric rainfall were relatively low and stable in the basin, with an average of 4.01 ± 1.28%. The average contribution rate of anthropogenic activities was 12.05% in the basin and even up to 27.80% in the lower reservoir area of the Ganjing River, which illustrated that the impoundment of Three Gorges Reservoir had brought great challenges to the water environment in the reservoir bay. The empirical power functions were tentatively proposed to eliminate the dilution effect caused by runoff discharge on the basis of previous studies. Accordingly, the rock weathering rate was calculated as 23.54 t/km2 in the Ganjing River Basin, which consumed atmospheric CO2 with a flux of 6.88 × 105 mol/y/km2. These results highlight the geochemical information of tributaries in the hinterland of the Three Gorges Reservoir, have significant implications for understanding the impact of impoundment, and provide data support for the integrated management of water resources in the Ganjing River Basin.

Details

Title
The Hydrochemistry, Ionic Source, and Chemical Weathering of a Tributary in the Three Gorges Reservoir
Author
Zhang, Qianzhu 1 ; Jin, Ke 1 ; Dong, Linyao 2 ; Zhao, Ruiyi 3 ; Liu, Wenxiang 1 ; Lu, Yang 1 ; Gan, Xiaoqing 1 ; Hu, Yue 1 ; Cha, Zhao 1 

 Chongqing Branch Institute, Changjiang River Scientific Research Institute, Chongqing 400026, China 
 Soil and Water Conservation Department, Changjiang River Scientific Research Institute, Wuhan 430000, China 
 College of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing 400074, China; Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, China 
First page
15376
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2739478414
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.