Content area

Abstract

Based on the finite element theory, a joint-plane modeling method is employed to connect the corresponding nodes at the joint surface of the woodworking computer numerical control (CNC) machining center bed with a 2-node 12-degree-of-freedom unit. A spatial element model is established, which can show the state of the nodes between joint surfaces when they are stretched, compressed, or twisted; and it can help build a woodworking CNC machining center on a finite element model of bed with the characteristics of the joint surface. The simulated analysis is performed on the model and is compared with the result of simulated analysis on the bed model that ignores the characteristics of the joint surface and modal experiment. The comparison verifies the effectiveness of the modeling method based on the characteristics of the joint surface. The weak link of the machine bed structure is analyzed and optimized. The natural frequency of the bed is improved by2.55% ~ 11.3%. The displacement is reduced by a maximum of 19.4%, and dynamic performance of the bed is improved.

Full text

Turn on search term navigation

© 2022 Sun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.