Abstract

Multicarrier modulation allows for deploying wideband systems resilient to multipath fading channels, impulsive noise, and intersymbol interference compared to single-carrier systems. Despite this, multicarrier signals suffer from different types of distortion, including channel noise sources and long- and short-term fading. Consequently, the receiver must estimate the channel features and compensate it for data recovery based on channel estimation techniques, such as non-blind, blind, and semi-blind approaches. These techniques are model-based and designed with accurate mathematical channel models encompassing their features. Nevertheless, complex environments challenge accurate mathematical channel estimation modeling, which might neither be accurate nor correspond to reality. This impairment decreases the system performance due to the channel estimation accuracy loss. Fortunately, (AI) algorithms can learn the relationship among different system variables using a model-driven or model-free approach. Thereby, AI algorithms are used for channel estimation by exploiting its complexity without unrealistic assumptions, following a better performance than conventional techniques under the same channel. Hence, this paper comprehensively surveys AI-based channel estimation for multicarrier systems. First, we provide essential background on conventional channel estimation techniques in the context of multicarrier systems. Second, the AI-aided channel estimation strategies are investigated using the following approaches: classical learning, neural networks, and reinforcement learning. Lastly, we discuss current challenges and point out future research directions based on recent findings.

Details

Title
Artificial intelligence for channel estimation in multicarrier systems for B5G/6G communications: a survey
Author
Vilas Boas, Evandro C. 1   VIAFID ORCID Logo  ; e Silva, Jefferson D. S. 1 ; de Figueiredo, Felipe A. P. 1   VIAFID ORCID Logo  ; Mendes, Luciano L. 1   VIAFID ORCID Logo  ; de Souza, Rausley A. A. 1   VIAFID ORCID Logo 

 National Institute of Telecommunications (Instituto Nacional de Telecomunicações - Inatel), Santa Rita do Sapucaí, Brazil (GRID:grid.454284.b) (ISNI:0000 0001 0753 533X) 
Publication year
2022
Publication date
Dec 2022
Publisher
Springer Nature B.V.
ISSN
16871472
e-ISSN
16871499
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2745182974
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.