Full Text

Turn on search term navigation

© 2022 Wanderley e Lima et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Introduction

Fatigue is defined as loss of capacity to develop muscle force and/or velocity that is reversible at rest. We assessed non-invasively the fatigue and recovery of inspiratory rib cage muscles during two respiratory endurance tests in healthy individuals.

Methods

The sniff nasal inspiratory pressure (SNIP) was assessed before and after two respiratory endurance tests: normocapnic hyperpnea (NH) and inspiratory pressure threshold loading (IPTL). Contractile (maximum rate of pressure development and time to peak pressure) and relaxation parameters (maximum relaxation rate [MRR], time constant of pressure decay [τ], and half relaxation time) obtained from sniff curves and shortening velocity and mechanical power estimated using optoelectronic plethysmography were analyzed during SNIP maneuvers. Respiratory muscle activity (electromyography) and tissue oxygenation (near-infrared spectroscopy—NIRS) were obtained during endurance tests and SNIP maneuvers. Fatigue development of inspiratory rib cage muscles was assessed according to the slope of decay of median frequency.

Results

Peak pressure during SNIP decreased after both protocols (p <0.05). MRR, shortening velocity, and mechanical power decreased (p <0.05), whereas τ increased after IPTL (p <0.05). The median frequency of inspiratory rib cage muscles (i.e., sum of sternocleidomastoid, scalene, and parasternal) decreased linearly during IPTL and exponentially during NH, mainly due to the sternocleidomastoid.

Conclusion

Fatigue development behaved differently between protocols and relaxation properties (MRR and τ), shortening velocity, and mechanical power changed only in the IPTL.

Details

Title
Non-invasive assessment of fatigue and recovery of inspiratory rib cage muscles during endurance test in healthy individuals
Author
Thiago Bezerra Wanderley e Lima; Sarmento, Antonio; Rayane Grayce da Silva Vieira; Esmívany Lhara de Freitas Castro; Pennati, Francesca; Aliverti, Andrea; Resqueti, Vanessa Regiane; Guilherme Augusto de Freitas Fregonezi  VIAFID ORCID Logo 
First page
e0277131
Section
Research Article
Publication year
2022
Publication date
Dec 2022
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2747887623
Copyright
© 2022 Wanderley e Lima et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.