It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
For the High-Luminosity Large Hadron Collider era, the trigger and data acquisition system of the Compact Muon Solenoid experiment will be entirely replaced. Novel design choices have been explored, including ATCA prototyping platforms with SoC controllers and newly available interconnect technologies with serial optical links with data rates up to 28 Gb/s. Trigger data analysis will be performed through sophisticated algorithms, including widespread use of Machine Learning, in large FPGAs, such as the Xilinx Ultrascale family. The system will process over 60 Tb/s of detector data with an event rate of 750 kHz. The system design and prototyping are described and examples of trigger algorithms reviewed.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Laboratoire Leprince-Ringuet CNRS/IN2P3 - Ecole Polytechnique, Institut Polytechnique de Paris , Plaiseau , France