Full Text

Turn on search term navigation

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Although research on applying machine learning to the performance of the built environment has been advancing considerably, outdoor environment prediction models still need to be more accurate. In this study, I investigated hybrid-driven methods for developing environmental performance prediction models and studied how machine learning algorithms may interpret spatial information in the context of an environmental performance simulation challenge. The simulation of the Universal Thermal Climate Index (UTCI) for outdoor applications served as an example. Specifically, I designed two different network structures, each with six neural network models. These neural network models were built with various numbers of layers, convolutional kernel sizes, and convolutional kernel layers. As shown by these models’ training results, I investigated the effect of model parameter settings on performance. In addition, I conducted interpretable analysis through the visual observation of hidden internal layers. The use of multilayer and small convolutional kernels, as well as an increase in the amount of training data, may be the reason neural network prediction performance was improved. From the perspective of interpretability analysis, the convolutional layer can more accurately analyze building space problems, and full connection layers focus more on the regression between the spatial features and performance results. This “space analysis → data regression” network structure can be expanded to wind environment forecasting or heat environment in the future.

Details

Title
Convolutional Neural Network Model to Predict Outdoor Comfort UTCI Microclimate Map
Author
Zhong, Guodong  VIAFID ORCID Logo 
First page
1860
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734433
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748264833
Copyright
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.