Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Computing the resilience of water resources, especially groundwater, has hitherto presented difficulties. This study highlights the calculation of the resilience of water resources in the small-scale Lali region, southwest Iran, to potential climate change in the base (1961–1990) and future (2021–2050) time periods under two Representative Concentration Pathways, i.e., RCP4.5 and RCP8.5. The Lali region is eminently suitable for comparing the resilience of alluvial groundwater (Pali aquifer), karst groundwater (Bibitarkhoun spring and the observation wells W1, W2 and W3) and surface water (Taraz-Harkesh stream). The log-normal distribution of the mean annual groundwater level and discharge rate of the water resources was initially calculated. Subsequently, different conditions from extremely dry to extremely wet were assigned to the different years for every water system. Finally, the resilience values of the water systems were quantified as a number between zero and one, such that they can be explicitly compared. The Pali alluvial aquifer demonstrated the maximum resilience, i.e., 1, to the future climate change. The Taraz-Harkesh stream, which is fed by the alluvial aquifer and the Bibitarkhoun karst spring, which is the largest spring of the Lali region, depicted average resilience of 0.79 and 0.59, respectively. Regarding the karstic observation wells, W1 being located in the recharge zone had the lowest resilience (i.e., 0.52), W3 being located in the discharge zone had the most resilience (i.e., 1) and W2 being located between W1 and W3 had an intermediate resilience (i.e., 0.60) to future climate change.

Details

Title
A Proposed Approach towards Quantifying the Resilience of Water Systems to the Potential Climate Change in the Lali Region, Southwest Iran
Author
Zeydalinejad, Nejat 1 ; Nassery, Hamid Reza 1 ; Alijani, Farshad 1 ; Shakiba, Alireza 1 ; Ghazi, Babak 2 

 Faculty of Earth Sciences, Shahid Beheshti University, 1983969411 Tehran, Iran 
 Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland 
First page
182
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22251154
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748270636
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.