Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Peroxymonosulfate (PMS) plays an important role in the advanced oxidation process for environmental remediation. In this study, barium titanate (BTO) piezocatalyst was selected for the activation of PMS driven by ultrasonic power. The degradation of Rhodamine B (RhB) by BTO single component, PMS single component, and BTO/PMS double components were investigated. The results indicated that PMS can be efficiently activated by BTO under an ultrasound with an RhB degradation rate of 98% within 20 min. The ultrasound not only promoted the activation of the PMS itself, but the surface charge carriers of BTO induced by the ultrasound also contributed to the activation of PMS. ·O2, ·OH, and ·SO4 radicals were found to be the main active species that participated in the reaction. In order to verify the reaction’s environmental applicability, amoxicillin (AMX) as a typical environmental pollutant was studied. BTO/PMS displayed 80% removal efficiency of AMX, and the products generated were less toxic as demonstrated by eco-toxicity comparison. This work provides a promising strategy to improve the utilization of ultrasonic energy and apply it to the field of environmental pollutants treatment.

Details

Title
Peroxymonosulfate Activation by BaTiO3 Piezocatalyst
Author
Yu, Maogen 1 ; Ni, Cheng 2 ; Hou, Tian 1 ; Guo, Weihong 2 ; Wang, Jinlong 1   VIAFID ORCID Logo 

 School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China 
 Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China 
First page
1452
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748270945
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.