Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In today’s world, phishing attacks are gradually increasing, resulting in individuals losing valuables, assets, personal information, etc., to unauthorized parties. In phishing, attackers craft malicious websites disguised as well-known, legitimate sites and send them to individuals to steal personal information and other related private details. Therefore, an efficient and accurate method is required to determine whether a website is malicious. Numerous methods have been proposed for detecting malicious uniform resource locators (URLs) using deep learning, machine learning, and other approaches. In this study, we have used malicious and benign URLs datasets and have proposed a detection mechanism for detecting malicious URLs using recurrent neural network models such as long short-term memory (LSTM), bidirectional long short-term memory (Bi-LSTM), and the gated recurrent unit (GRU). Experimental results have shown that the proposed mechanism achieved an accuracy of 97.0% for LSTM, 99.0% for Bi-LSTM, and 97.5% for GRU, respectively.

Details

Title
Multimodel Phishing URL Detection Using LSTM, Bidirectional LSTM, and GRU Models
Author
Roy, Sanjiban Sekhar 1   VIAFID ORCID Logo  ; Ali Ismail Awad 2   VIAFID ORCID Logo  ; Amare, Lamesgen Adugnaw 1 ; Mabrie Tesfaye Erkihun 1 ; Anas, Mohd 1   VIAFID ORCID Logo 

 School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India 
 College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 17551, United Arab Emirates 
First page
340
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19995903
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748280690
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.