Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Native plant communities can be invaded by different numbers of alien plant species or by the same number of alien plant species with different levels of evenness. However, little is known about how alien invasive plant species richness and evenness affect soil microbial communities. We constructed native herbaceous plant communities invaded by exotic plants with different richness (1, 2, 4 and 8 species) and evenness (high and low) and analyzed soil physico-chemical properties and the diversity and composition of soil fungal and bacterial communities by high-throughput Illumina sequencing. Overall, the species richness and evenness of invasive plants had no significant effect on bacterial and fungal alpha diversity (OTUs, Shannon, Simpson, Chao1 and ACE) or the soil physico-chemical properties. However, invasive species richness had a significant impact on the relative abundance of the most dominant fungi, Ascomycota and Bipolaris, and the dominant bacteria, Actinobacteriota, which increased with increasing invasive species richness. The relative abundance of the dominant microbial groups was significantly correlated with the relative abundance of some specific invasive plants in the community. This study sheds new light on the effects of plant co-invasion on soil microbial communities, which may help us understand the underlying mechanisms of multiple alien plant invasion processes from the perspective of soil microorganisms.

Details

Title
Effects of Invasive Plant Diversity on Soil Microbial Communities
Author
Wang, Xiaoyan  VIAFID ORCID Logo  ; Wang, Xue; Wang, Wei 1 ; Wang, Jiang; Yu, Feihai  VIAFID ORCID Logo 

 School of Life Science, Taizhou University, Taizhou 318000, China 
First page
992
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14242818
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748281154
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.