Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is highly contagious and remains a major public health challenge despite the availability of effective vaccines. SARS-CoV-2 enters cells through the binding of its spike receptor-binding domain (RBD) to the human angiotensin-converting enzyme 2 (ACE2) receptor in concert with accessory receptors/molecules that facilitate viral attachment, internalization, and fusion. Although ACE2 plays a critical role in SARS-CoV-2 replication, its expression profiles are not completely associated with infection patterns, immune responses, and clinical manifestations. Additionally, SARS-CoV-2 infects cells that lack ACE2, and the infection is resistant to monoclonal antibodies against spike RBD in vitro, indicating that some human cells possess ACE2-independent alternative receptors, which can mediate SARS-CoV-2 entry. Here, we discuss these alternative receptors and their interactions with SARS-CoV-2 components for ACE2-independent viral entry. These receptors include CD147, AXL, CD209L/L-SIGN/CLEC4M, CD209/DC-SIGN/CLEC4L, CLEC4G/LSECtin, ASGR1/CLEC4H1, LDLRAD3, TMEM30A, and KREMEN1. Most of these receptors are known to be involved in the entry of other viruses and to modulate cellular functions and immune responses. The SARS-CoV-2 omicron variant exhibits altered cell tropism and an associated change in the cell entry pathway, indicating that emerging variants may use alternative receptors to escape the immune pressure against ACE2-dependent viral entry provided by vaccination against RBD. Understanding the role of ACE2-independent alternative receptors in SARS-CoV-2 viral entry and pathogenesis may provide avenues for the prevention of infection by SARS-CoV-2 variants and for the treatment of COVID-19.

Details

Title
ACE2-Independent Alternative Receptors for SARS-CoV-2
Author
Lim, Suhyeon 1   VIAFID ORCID Logo  ; Zhang, Monica 1 ; Chang, Theresa L 2   VIAFID ORCID Logo 

 Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA 
 Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA; Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA 
First page
2535
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19994915
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748387586
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.