Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The estimation of the infestation level in a field and the consequent determination of the economic threshold is a basic requisite to rationalize post-emergence weeding. In this study, a simple and inexpensive procedure to determine the economic threshold based on weed cover is proposed. By using high-resolution RGB images captured by a low-cost drone, a free downloadable app for image processing and common spreadsheet software to perform the model parametrization, two different methods have been tested. The first method was based on the joint estimation of the two parameters involved in weed cover calculation, whereas the second method required the availability of further images for the separate estimation of the first parameter. The reliability of the two methods has been evaluated through the comparison with observed data and the goodness of fit in parameter calibration has been verified by calculating appropriate quality indices. The results showed an acceptable estimation of the weed cover value for the second method with respect to observed data (0.24 vs. 0.17 m2 and 0.17 vs. 0.14 m2, by processing images captured at 10 and 20 m, respectively), whereas the estimations obtained with the first method were disappointing (0.35 vs. 0.17 m2 and 0.33 vs. 0.14 m2, by processing images captured at 10 and 20 m, respectively).

Details

Title
A Simple Method to Estimate Weed Control Threshold by Using RGB Images from Drones
Author
Ercolini, Leonardo 1   VIAFID ORCID Logo  ; Grossi, Nicola 2   VIAFID ORCID Logo  ; Silvestri, Nicola 2   VIAFID ORCID Logo 

 Centro di Ricerche Agro-Ambientali (CiRAA) “Enrico Avanzi”, Università di Pisa, IT, 56126 Pisa, Italy 
 Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali (DiSAAA), Università di Pisa, IT, 56124 Pisa, Italy 
First page
11935
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748523180
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.