Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As an ingredient in various foods, Chrysanthemum morifolium flower is popular due to its multiple health benefits. Pyrrolizidine alkaloids (PAs) are hepatotoxic secondary metabolites in Chrysanthemum family. Effects of high-pressure extraction (HPE) on PAs removal efficiency, as well as the retention efficiency of functional components, including chlorogenic acid, luteolin-7-β-D-glucopyranoside, 3,5-dicaffeyl quinic acid and total flavonoids, were investigated and optimized using response surface methodology (RSM). Pressure (0.1–200 MPa), numbers of cycles (1–5) and acetic acid concentration (0–10%) were chosen as the independent variables. The results indicated that the pressure was the most significant factors affecting all responses. The optimum HPE for removing Pas and retaining functional components were set at 124 MPa, with one cycle and with an acetic acid concentration of 10%. After comparing the experimental optimum values and predicted optimum values, the validity of RSM model was proved.

Details

Title
Multi-Response Optimization of Pyrrolizidine Alkaloids Removal from Chrysanthemum morifolium by High-Pressure Extraction
Author
Wang, Hao 1   VIAFID ORCID Logo  ; Wang, Qiang 1 ; Lai, Aiping 1 ; Zhu, Jiahong 1 ; Huang, Xiuzhu 2 ; Hu, Guixian 1 

 Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 298 Deshengzhong Road, Hangzhou 310021, China 
 Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, 22 Maizidian Road, Beijing 100125, China 
First page
3827
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23048158
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748523325
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.