Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Electrochemical impedance spectroscopy (EIS) is a well-established method of battery analysis, where the response of a battery to either a voltage or current excitation signal spanning a wide frequency spectrum is measured and analyzed. State-of-the-art EIS analysis is limited to high-precision measurement systems within laboratory environments. In order to be relevant in practical applications, EIS analysis needs to be carried out with low-cost sensors, which suffer from high levels of measurement noise. This article presents an approach to estimate the equivalent circuit model (ECM) parameters of a Li-Ion battery pack based on EIS measurements in the presence of high levels of noise. The proposed algorithm consists of a fast Fourier transform, feature extraction, curve fitting, and least-squares estimation. The results of the proposed parameter-estimation algorithm are compared to that of recent work for objective performance comparison. The error analysis of the proposed approach, in comparison to the existing approach, demonstrated significant improvement in parameter estimation accuracy in low signal-to-noise ratio (SNR) regions. Results show that the proposed algorithm significantly outperforms the previous method under high-measurement-noise scenarios without requiring a significant increase in computational resources.

Details

Title
Robust Approach to Battery Equivalent-Circuit-Model Parameter Extraction Using Electrochemical Impedance Spectroscopy
Author
Abaspour, Marzia 1 ; Pattipati, Krishna R 2 ; Shahrrava, Behnam 1 ; Balakumar Balasingam 1   VIAFID ORCID Logo 

 Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada 
 Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269, USA 
First page
9251
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748532748
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.