Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Transient stability (TS) and short-term voltage stability (STVS) assessment are of fundamental importance for the operation security of power systems. Both phenomena can be mutually influenced in weak power systems due to the proliferation of power electronic interface devices and the phase-out of conventional heavy machines (e.g., thermal power plants). There is little research on the assessment of both types of stability together, despite the fact that they develop over the same short-term period, and that they can have a major influence on the overall transient performance driven by large electrical disturbances (e.g., short circuits). This work addresses this open research challenge by proposing a methodology for the joint assessment of TS and STVS. The methodology aims at estimating the resulting short-term stability state (STSS) in stable, or unstable conditions, following critical events, such as the synchronism loss of synchronous generators (SG) or the stalling of induction motors (IM). The estimations capture the mechanisms responsible for the degradations of TS and STVS, respectively. The paper overviews the off-line design of the data-driven STSS classification methodology, which supports the design and training of a hybrid deep neural network RCNN (recurrent convolutional neural network). The RCNN can automatically capture spatial and temporal features from the power system through a time series of selected physical variables, which results in a high estimation degree for STSS in real-time applications. The methodology is tested on the New England 39-bus system, where the results demonstrate the superiority of the proposed methodology over other traditional and deep learning-based methodologies. For reference purposes, the numerical tests also illustrate the classification performance in special situations, when the training is performed by exclusively using measurements from generation and motor load buses, which constitute locations where the investigated stability can be observed.

Details

Title
Recurrent Convolutional Neural Network-Based Assessment of Power System Transient Stability and Short-Term Voltage Stability
Author
Tapia, Estefania Alexandra 1 ; Colomé, Delia Graciela 1 ; Rueda Torres, José Luis 2   VIAFID ORCID Logo 

 Electrical Energy Institute, Universidad Nacional de San Juan—CONICET, San Juan 5400, Argentina 
 Department of Electrical Sustainable Energy, Delft University of Technology (TU Delft), 2628 CN, The Netherlands 
First page
9240
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748535702
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.