Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Understanding the regulation of the testicular endocrine function leading to testosterone production is a major objective as the alteration of endocrine function is associated with the development of many diseases such as infertility. In the last decades, it has been demonstrated that several endogenous molecules regulate the steroidogenic pathway. Among them, bile acids have recently emerged as local regulators of testicular physiology and particularly endocrine function. Bile acids act through the nuclear receptor FXRα (Farnesoid-X-receptor alpha; NR1H4) and the G-protein-coupled bile acid receptor (GPBAR-1; TGR5). While FXRα has been demonstrated to regulate testosterone synthesis within Leydig cells, no data are available regarding TGR5. Here, we investigated the potential role of TGR5 within Leydig cells using cell culture approaches combined with pharmacological exposure to the TGR5 agonist INT-777. The data show that activation of TGR5 results in a decrease in testosterone levels. TGR5 acts through the PKA pathway to regulate steroidogenesis. In addition, our data show that TGR5 activation leads to an increase in cholesterol ester levels. This suggests that altered lipid homeostasis may be a mechanism explaining the TGR5-induced decrease in testosterone levels. In conclusion, the present work highlights the impact of the TGR5 signaling pathway on testosterone production and reinforces the links between bile acid signaling pathways and the testicular endocrine function. The testicular bile acid pathways need to be further explored to increase our knowledge of pathologies associated with impaired testicular endocrine function, such as fertility disorders.

Details

Title
Identification of the Role of TGR5 in the Regulation of Leydig Cell Homeostasis
Author
Holota, Hélène; De Haze, Angélique; Martinot, Emmanuelle  VIAFID ORCID Logo  ; Monrose, Melusine; Jean-Paul Saru; Caira, Françoise; Beaudoin, Claude  VIAFID ORCID Logo  ; Volle, David H
First page
15398
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748550066
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.