Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Plant laccases, as multicopper oxidases, play an important role in monolignol polymerization, and participate in the resistance response of plants to multiple biotic/abiotic stresses. However, little is currently known about the role of laccases in the cold stress response of plants. In this study, the laccase activity and lignin content of C. sinensis leaves increased after the low-temperature treatment, and cold treatment induced the differential regulation of 21 CsLACs, with 15 genes being upregulated and 6 genes being downregulated. Exceptionally, the relative expression level of CsLAC18 increased 130.17-fold after a 48-h treatment. The full-length coding sequence of CsLAC18 consists of 1743 nucleotides and encodes a protein of 580 amino acids, and is predominantly expressed in leaves and fruits. CsLAC18 was phylogenetically related to AtLAC17, and was localized in the cell membrane. Overexpression of CsLAC18 conferred enhanced cold tolerance on transgenic tobacco; however, virus-induced gene silencing (VIGS)-mediated suppression of CsLAC18 in Poncirus trifoliata significantly impaired resistance to cold stress. As a whole, our findings revealed that CsLAC18 positively regulates a plant’s response to cold stress, providing a potential target for molecular breeding or gene editing.

Details

Title
The Citrus Laccase Gene CsLAC18 Contributes to Cold Tolerance
Author
Xu, Xiaoyong 1   VIAFID ORCID Logo  ; Zhang, Yueliang 1 ; Liang, Mengge 1 ; Kong, Weiwen 1 ; Liu, Jihong 2   VIAFID ORCID Logo 

 School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China 
 Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China 
First page
14509
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748550801
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.