Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aryl sulfides play an important role in pharmaceuticals, biologically active molecules and polymeric materials. Herein, a general and efficient protocol for Pd@COF-TB (a kind of Pd nanocatalyst supported by a covalent organic framework)/DIPEA-catalyzed one-pot synthesis of symmetrical diaryl sulfides through a C-S coupling reaction from aryl iodides and Na2S2O3 is developed. More importantly, the addition of N,N-diisopropylethylamine (DIPEA) can not only enhance the catalytic activity of a Pd@COF-TB nanocatalyst, but also effectively inhibit the formation of biphenyl byproducts, which are a product of Ullmann reaction. Besides, it has been confirmed that the aryl Bunte salts generated in situ from Na2S2O3 and aryl iodides are the sulfur sources involved in this C-S coupling reaction. With the strategy proposed in this work, a variety of symmetrical diaryl sulfides could be obtained in moderate to excellent yields with a high tolerance of various functional groups. Moreover, a possible mechanism of this Pd nanoparticle-catalyzed C-S coupling reaction is proposed based on the results of controlling experiments.

Details

Title
Efficient Construction of Symmetrical Diaryl Sulfides via a Supported Pd Nanocatalyst-Catalyzed C-S Coupling Reaction
Author
Jin, Hao 1   VIAFID ORCID Logo  ; Liu, Penghao 1 ; Teng, Qiaoqiao 1 ; Wang, Yuxiang 1 ; Meng, Qi 1 ; Chao, Qian 2 

 Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China 
 Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University—Quzhou, Quzhou 324000, China 
First page
15360
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748550829
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.