Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Inherited metabolic disorders (IMD) are rare medical conditions caused by genetic defects that interfere with the body’s metabolism. The clinical phenotype is highly variable and can present at any age, although it more often manifests in childhood. The number of treatable IMDs has increased in recent years, making early diagnosis and a better understanding of the natural history of the disease more important than ever. In this review, we discuss the main challenges faced in applying proteomics to the study of IMDs, and the key advances achieved in this field using tandem mass spectrometry (MS/MS). This technology enables the analysis of large numbers of proteins in different body fluids (serum, plasma, urine, saliva, tears) with a single analysis of each sample, and can even be applied to dried samples. MS/MS has thus emerged as the tool of choice for proteome characterization and has provided new insights into many diseases and biological systems. In the last 10 years, sequential window acquisition of all theoretical fragmentation spectra mass spectrometry (SWATH-MS) has emerged as an accurate, high-resolution technique for the identification and quantification of proteins differentially expressed between healthy controls and IMD patients. Proteomics is a particularly promising approach to help obtain more information on rare genetic diseases, including identification of biomarkers to aid early diagnosis and better understanding of the underlying pathophysiology to guide the development of new therapies. Here, we summarize new and emerging proteomic technologies and discuss current uses and limitations of this approach to identify and quantify proteins. Moreover, we describe the use of proteomics to identify the mechanisms regulating complex IMD phenotypes; an area of research essential to better understand these rare disorders and many other human diseases.

Details

Title
Proteomics in Inherited Metabolic Disorders
Author
Maria del Pilar Chantada-Vázquez 1   VIAFID ORCID Logo  ; Bravo, Susana B 1   VIAFID ORCID Logo  ; Barbosa-Gouveia, Sofía 2   VIAFID ORCID Logo  ; Alvarez, José V 2   VIAFID ORCID Logo  ; Couce, María L 2   VIAFID ORCID Logo 

 Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain 
 Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain 
First page
14744
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748550853
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.