Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A piston wear fault is a major failure mode of axial piston pumps, which may decrease their volumetric efficiency and service life. Although fault detection based on machine learning theory can achieve high accuracy, the performance mainly depends on the detection model and feature selection. Feature selection in learning has recently emerged as a crucial issue. Therefore, piston wear detection and feature selection are essential and urgent. In this paper, we propose a vibration signal-based methodology using the improved spare support vector machine, which can integrate the feature selection into the piston wear detection learning process. Forty features are defined to capture the piston wear signature in the time domain, frequency domain, and time–frequency domain. The relevance and impact of sparsity in 40 features are illustrated through the single and multiple statistical feature analysis. Model performance is assessed and the sparse features are discovered. The maximum model testing and training accuracy are 97.50% and 96.60%, respectively. Spare features s10, s12, Ew(8), x7, Ee(5), and Ee(4) are selected and validated. Results show that the proposed methodology is applicable for piston wear detection and feature selection, with high model accuracy and good feature sparsity.

Details

Title
Piston Wear Detection and Feature Selection Based on Vibration Signals Using the Improved Spare Support Vector Machine for Axial Piston Pumps
Author
Xia, Shiqi 1   VIAFID ORCID Logo  ; Xia, Yimin 1 ; Xiang, Jiawei 2   VIAFID ORCID Logo 

 State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410017, China 
 College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325000, China 
First page
8504
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748556840
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.