Full Text

Turn on search term navigation

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Over past years, the fabrication of Ti-based permanent implants for fracture fixation, joint replacement and bone or tooth substitution, has become a routine task. However, it has been found that some degradation phenomena occurring on the Ti surface limits the life or the efficiency of the artificial constructs. The task of avoiding such adverse effects, to prevent microbial colonization and to accelerate osteointegration, is being faced by a variety of approaches in order to adapt Ti surfaces to the needs of osseous tissues. Among the large set of biocompatible materials proposed as an interface between Ti and the hosting tissue, diamond has been proven to offer bioactive and mechanical properties able to match the specific requirements of osteoblasts. Advances in material science and implant engineering are now enabling us to produce micro- or nano-crystalline diamond coatings on a variety of differently shaped Ti constructs. The aim of this paper is to provide an overview of the research currently ongoing in the field of diamond-coated orthopedic Ti implants and to examine the evolution of the concepts that are accelerating the full transition of such technology from the laboratory to clinical applications.

Details

Title
Key Challenges in Diamond Coating of Titanium Implants: Current Status and Future Prospects
Author
Terranova, Maria Letizia 1 

 Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy; [email protected] or [email protected]; Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy 
First page
3149
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22279059
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756675924
Copyright
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.