Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Sharing prior knowledge across multiple robotic manipulation tasks is a challenging research topic. Although the state-of-the-art deep reinforcement learning (DRL) algorithms have shown immense success in single robotic tasks, it is still challenging to extend these algorithms to be applied directly to resolve multi-task manipulation problems. This is mostly due to the problems associated with efficient exploration in high-dimensional state and continuous action spaces. Furthermore, in multi-task scenarios, the problem of sparse reward and sample inefficiency of DRL algorithms is exacerbated. Therefore, we propose a method to increase the sample efficiency of the soft actor-critic (SAC) algorithm and extend it to a multi-task setting. The agent learns a prior policy from two structurally similar tasks and adapts the policy to a target task. We propose a prioritized hindsight with dual experience replay to improve the data storage and sampling technique, which, in turn, assists the agent in performing structured exploration that leads to sample efficiency. The proposed method separates the experience replay buffer into two buffers to contain real trajectories and hindsight trajectories to reduce the bias introduced by the hindsight trajectories in the buffer. Moreover, we utilize high-reward transitions from previous tasks to assist the network in easily adapting to the new task. We demonstrate the proposed method based on several manipulation tasks using a 7-DoF robotic arm in RLBench. The experimental results show that the proposed method outperforms vanilla SAC in both a single-task setting and multi-task setting.

Details

Title
Prioritized Hindsight with Dual Buffer for Meta-Reinforcement Learning
Author
Beyene, Sofanit Wubeshet; Ji-Hyeong Han  VIAFID ORCID Logo 
First page
4192
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756679734
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.