Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Fatigue driving behavior recognition in all-weather real driving environments is a challenging task. Accurate recognition of fatigue driving behavior is helpful to improve traffic safety. The facial landmark detector is crucial to fatigue driving recognition. However, existing facial landmark detectors are mainly aimed at stable front face color images instead of side face gray images, which is difficult to adapt to the fatigue driving behavior recognition in real dynamic scenes. To maximize the driver’s facial feature information and temporal characteristics, a fatigue driving behavior recognition method based on a multi-scale facial landmark detector (MSFLD) is proposed. First, a spatial pyramid pooling and multi-scale feature output (SPP-MSFO) detection model is built to obtain a face region image. The MSFLD is a lightweight facial landmark detector, which is composed of convolution layers, inverted bottleneck blocks, and multi-scale full connection layers to achieve accurate detection of 23 key points on the face. Second, the aspect ratios of the left eye, right eye and mouth are calculated in accordance with the coordinates of the key points to form a fatigue parameter matrix. Finally, the combination of adaptive threshold and statistical threshold is used to avoid misjudgment of fatigue driving recognition. The adaptive threshold is dynamic, which solves the problem of the difference in the aspect ratio of the eyes and mouths of different drivers. The statistical threshold is a supplement to solve the problem of driver’s low eye threshold and high mouth threshold. The proposed methods are evaluated on the Hunan University Fatigue Detection (HNUFDD) dataset. The proposed MSFLD achieves a normalized mean error value of 5.4518%, and the accuracy of the fatigue driving recognition method based on MSFLD achieves 99.1329%, which outperforms that of state-of-the-art methods.

Details

Title
Fatigue Driving Recognition Method Based on Multi-Scale Facial Landmark Detector
Author
Xiao, Weichu 1 ; Liu, Hongli 2 ; Ma, Ziji 2 ; Chen, Weihong 3 ; Sun, Changliang 2 ; Shi, Bo 2 

 College of Electrical and Information Engineering, Hunan University, Changsha 410082, China; College of Information and Electronic Engineering, Hunan City University, Yiyang 413000, China 
 College of Electrical and Information Engineering, Hunan University, Changsha 410082, China 
 College of Information Technology and Management, Hunan University of Finance and Economics, Changsha 410205, China 
First page
4103
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756679905
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.