Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The National Observatory of Athens intends to operate a European Climate Change Observatory (ECCO) on the island of Antikythera, which meets the criteria to become a first-class research infrastructure. This project requires electricity that is unprofitable to get from the thermal units of this small island (20 km2). Solar energy is the subject that was examined in case it can give an environmentally and economically viable solution, both for the observatory and for the whole island. Specifically, observational and modeled data were utilized relevant to solar dynamic and atmospheric parameters in order to simulate the solar energy production by photovoltaics (PV) and Concentrated Solar Power (CSP) plant technologies. To this direction, a synergy of aerosol and cloud optical properties from the Copernicus Atmosphere Monitoring Service (CAMS) and the Eumetsat’s support to nowcasting and very short range forecasting (NWC SAF) with Radiative Transfer Model (RTM) techniques was used in order to quantify the solar radiation and energy production as well as the effect of the atmospheric parameters and to demonstrate energy adequacy scenarios and financial analysis. The ultimate goal is to highlight the opportunity for energy transition and autonomy for both the island itself and the rest of the community with the operation of ECCO, and hence to tackle climate change.

Details

Title
Solar Energy Production Planning in Antikythera: Adequacy Scenarios and the Effect of the Atmospheric Parameters
Author
Kosmopoulos, Panagiotis G 1   VIAFID ORCID Logo  ; Mechilis, Marios T 2 ; Kaoura, Panagiota 2 

 Institute for Environmental Research and Sustainable Development, National Observatory of Athens (IERSD/NOA), 15236 Athens, Greece 
 Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece 
First page
9406
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756695646
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.