Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Nonlinear free convection in an inclined rectangular porous cavity heated from below has been studied using a two-dimensional spectral decomposition. The code uses pseudo-arclength continuation to follow solution curves around fold bifurcations. The evolution with inclination of the pattern of convection is complicated and it relies strongly on both the Darcy–Rayleigh number and the aspect ratio of the cavity. When the inclination is large it is generally true that only one cell appears, and that it has a circulation that is consistent with the direction of the buoyancy forces along the heated and cooled boundaries. However, as the inclination decreases back towards the horizontal, this unicellular pattern evolves, sometimes initially via fold bifurcations, into patterns with different numbers of cells. Such evolutions always conserve the parity of the number of cells (such as one cell becoming three and then five, or two cells becoming four), but bifurcations also arise between patterns with different parities. These phenomena are illustrated using a suitable selection of solution curves that show the dependence of the Nusselt number on the inclination.

Details

Title
Modal Selection for Inclined Darcy-Bénard Convection in a Rectangular Cavity
Author
Rees, D Andrew S 1   VIAFID ORCID Logo  ; Barletta, Antonio 2   VIAFID ORCID Logo 

 Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK 
 Dipartimento di Ingegneria Industriale, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy 
First page
361
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23115521
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756698482
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.