Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Finfish production has seen over three-fold increase in the past 30 years (1990–2020), and Atlantic salmon (A. salmon; salmo salar) accounted for approximately 32.6% of the total marine and coastal aquaculture of all finfish species in the year 2020, making it one of the most profitable farmed fish species globally. This growth in production is, however, threatened by a number of problems which can be solved using the CRISPR/Cas technology. In vitro applications of CRISPR/Cas using cell lines can complement its in vivo applications, but salmonids-derived cell lines are difficult to gene edit because they grow slowly, are difficult to transfect and isolate single clones of gene-edited cells. While clonal isolation of the gene-edited Chinook salmon cell line (CHSE-214) has successfully been performed, there is no report of successful clonal isolation of the gene-edited A. salmon ASK-1 and SHK-1cell lines. In the current study, two gene loci—cr2 and mmp9 of A. salmon—were efficiently edited using the ribonucleoprotein (RNP) and plasmid CRISPR/Cas9 strategies. Edited cells were enriched using flow cytometer-activated cell sorting (FACS), followed by clonal isolation and expansion of edited cells. The study both confirms the recent report of the highly efficient editing of these widely used model cell lines, as well as extends the frontline in the single-cell cloning of gene-edited salmonids cells. The report also highlights the pitfalls and future directions in the application of CRISPR/Cas9 in these cells.

Details

Title
CRISPR/Cas9-Mediated Gene Editing in Salmonids Cells and Efficient Establishment of Edited Clonal Cell Lines
Author
Strømsnes, Trygve A H 1   VIAFID ORCID Logo  ; Schmidke, Sebastian E 1 ; Mitra Azad 1 ; Singstad, Øyvind 1 ; Grønsberg, Idun M 1 ; Dalmo, Roy A 2   VIAFID ORCID Logo  ; Okoli, Arinze S 1 

 NORCE Norwegian Research Centre AS, Climate & Environment Division, Siva Innovasjonssenter, Sykehusveien 21, 9019 Tromsø, Norway 
 Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, Muninbakken 21, 9019 Tromsø, Norway 
First page
16218
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756738351
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.