Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ante-mortem bovine tuberculosis (bTB) tests for buffaloes include the single comparative intradermal tuberculin test (SCITT), interferon-gamma (IFN-γ) release assay (IGRA) and IFN-γ-inducible protein 10 release assay (IPRA). Although parallel test interpretation increases the detection of Mycobacterium bovis (M. bovis)-infected buffaloes, these algorithms may not be suitable for screening buffaloes in historically bTB-free herds. In this study, the specificities of three assays were determined using M. bovis-unexposed herds, historically negative, and a high-specificity diagnostic algorithm was developed. Serial test interpretation (positive on both) using the IGRA and IPRA showed significantly greater specificity (98.3%) than individual (90.4% and 80.9%, respectively) tests or parallel testing (73%). When the SCITT was added, the algorithm had 100% specificity. Since the cytokine assays had imperfect specificity, potential cross-reactivity with nontuberculous mycobacteria (NTM) was investigated. No association was found between NTM presence (in oronasal swab cultures) and positive cytokine assay results. As a proof-of-principle, serial testing was applied to buffaloes (n = 153) in a historically bTB-free herd. Buffaloes positive on a single test (n = 28) were regarded as test-negative. Four buffaloes were positive on IGRA and IPRA, and M. bovis infection was confirmed by culture. These results demonstrate the value of using IGRA and IPRA in series to screen buffalo herds with no previous history of M. bovis infection.

Details

Title
High-Specificity Test Algorithm for Bovine Tuberculosis Diagnosis in African Buffalo (Syncerus caffer) Herds
Author
Clarke, Charlene 1   VIAFID ORCID Logo  ; Bernitz, Netanya 2 ; Goosen, Wynand J 1   VIAFID ORCID Logo  ; Miller, Michele A 1   VIAFID ORCID Logo 

 DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa 
 DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1 7HT, UK 
First page
1393
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20760817
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756756794
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.