Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Linewidth measurement of a short pulse single-longitudinal mode laser with a low repetition rate has been a big challenge. Although the Fabry–Pérot (FP) etalon in combination with a beam profiler is an effective approach to measure the linewidth, the convolution error introduced by the inherent transmission spectrum width of an FP restricts the measurement accuracy. Here, the source of convolutional errors of the FP etalon-based linewidth measurement is analyzed, and the convolutional fitting method is proposed to reduce the errors. The results show that the linewidth measurement using the FP cavity with low reflectance (95%) can achieve the same resolution as that with high reflectance (99.5%) based on this convolution error reduction method. The study provides a simple approach to accurately measuring the linewidth of pulsed lasers, even with low energy.

Details

Title
Convolution Error Reduction for a Fabry–Pérot-Based Linewidth Measurement: A Theoretical and Experimental Study
Author
Hun, Xuanning 1 ; Bai, Zhenxu 1   VIAFID ORCID Logo  ; Wang, Jianping 1 ; Chen, Bin 1 ; Cui, Can 1 ; Wang, Yulei 1 ; Lu, Zhiwei 1 

 Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China 
First page
1004
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23046732
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756776615
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.