Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Maltol is widely used as a flavor enhancer in baked goods and has an antimicrobial function. Maltol can also be incorporated into biopolymer films to produce active biodegradable packaging for bakery products. This research investigated the incorporation of 1–10% maltol into acetylated cassava starch films as functional packaging for shelf-life extension of butter cake. Films were determined for morphology, chemical interaction and packaging properties. Infrared absorption indicated H-bonding between starch and maltol, while plasticization effects decreased mechanical relaxation temperature. Microstructures showed enhanced smoothness at up to 3% maltol, while maltol crystallization occurred at higher concentrations, giving non-homogeneous matrices. Tensile strength and elongation at break reduced by 37% and 34%, respectively, with the addition of maltol up to 10%. Maltol concentration modified the hydrophilicity and molecular mobility of the matrices, impacting water vapor and oxygen permeability. Films incorporated with maltol were used as packaging for preservative-free butter cake and delayed visible mold growth at room temperature. Starch films with maltol at 1–5% delayed fungal growth by up to 2.7–times, while films containing 10% maltol inhibited mold growth by 6–times (up to 19 days of storage). Incorporating maltol into starch films produced bioactive materials, extending shelf-life while maintaining the aroma of bakery products.

Details

Title
Maltol-Incorporated Acetylated Cassava Starch Films for Shelf-Life-Extension Packaging of Bakery Products
Author
Promhuad, Khwanchat 1 ; Bumbudsanpharoke, Nattinee 1   VIAFID ORCID Logo  ; Wadaugsorn, Kiattichai 1 ; Sonchaeng, Uruchaya 1   VIAFID ORCID Logo  ; Harnkarnsujarit, Nathdanai 2   VIAFID ORCID Logo 

 Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand 
 Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand 
First page
5342
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756780132
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.