Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Benefiting from the advancement of deep neural networks (DNNs), detecting objects from drone-view images has achieved great success in recent years. It is a very challenging task to deploy such DNN-based detectors on drones in real-life applications due to their excessive computational costs and limited onboard computational resources. Large redundant computation exists because existing drone-view detectors infer all inputs with nearly identical computation. Detectors with less complexity can be sufficient for a large portion of inputs, which contain a small number of sparse distributed large-size objects. Therefore, a drone-view detector supporting input-aware inference, i.e., capable of dynamically adapting its architecture to different inputs, is highly desirable. In this work, we present a Dynamic Context Collection Network (DyCC-Net), which can perform input-aware inference by dynamically adapting its structure to inputs of different levels of complexities. DyCC-Net can significantly improve inference efficiency by skipping or executing a context collector conditioned on the complexity of the input images. Furthermore, since the weakly supervised learning strategy for computational resource allocation lacks of supervision, models may execute the computationally-expensive context collector even for easy images to minimize the detection loss. We present a Pseudo-label-based semi-supervised Learning strategy (Pseudo Learning), which uses automatically generated pseudo labels as supervision signals, to determine whether to perform context collector according to the input. Extensive experiment results on VisDrone2021 and UAVDT, show that our DyCC-Net can detect objects in drone-captured images efficiently. The proposed DyCC-Net reduces the inference time of state-of-the-art (SOTA) drone-view detectors by over 30 percent, and DyCC-Net outperforms them by 1.94% in AP75.

Details

Title
DyCC-Net: Dynamic Context Collection Network for Input-Aware Drone-View Object Detection
Author
Yue Xi 1 ; Jia, Wenjing 2   VIAFID ORCID Logo  ; Miao, Qiguang 3   VIAFID ORCID Logo  ; Liu, Xiangzeng 3   VIAFID ORCID Logo  ; Fan, Xiaochen 4   VIAFID ORCID Logo  ; Lou, Jian 1 

 Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, China 
 Global Big Data Technologies Centre, University of Technology Sydney, Ultimo, NSW 2007, Australia 
 School of Computer Science and Technology, Xidian University, Xi’an 710071, China 
 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China 
First page
6313
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756780174
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.