Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The mechanical properties of HTPE binders have been systemically studied through combining the microstructure molecular simulations with macroscopic experiments. In this study, the crosslinking structures of HTPE binders were established by a computational procedure. Based on the optimized crosslinking models, the mechanical properties and the glass transition temperatures (Tg) of HTPE/N-100, HTPE/HDI, HTPE/TDI, and HTPE/IPDI binder systems were simulated; specifically, the Tg were 245.758 K, 244.573 K, 254.877 K, and 240.588 K, respectively. Then the bond-length distributions, conformation properties, cohesive energy densities, and fraction free volume were investigated to analyze how the microstructures of the crosslinking models influenced the mechanical properties of HTPE binders. Simultaneously, FTIR-ATR spectra analysis of HTPE binders proved that the special peaks, such as -NH and -NCO, could be seen in the crosslinking polyurethane structures synthesized between prepolymers and curing agents. The dynamic mechanical analysis was carried out, and it found that the Tg of HTPE/N-100, HTPE/HDI, HTPE/TDI, and HTPE/IPDI binder systems were −68.18 °C, −68.63 °C, −65.67 °C, and −68.66 °C, respectively. In addition, the uniaxial tension verified that both the ultimate stress and Young’s modulus of HTPE binder systems declined with the rising temperatures, while the strains at break presented a fluctuant variation. When it was closer to glass temperatures, especially −40 °C, the mechanical properties of HTPE binders were more prominent. The morphology of the fractured surface revealed that the failure modes of HTPE binders were mainly intermolecular slipping and molecular chain breakage. In a word, the experimental results were prospectively satisfied using the simulations, which confirmed the accuracy of the crosslinking models between prepolymers and curing agents. This study could provide a scientific option for the HTPE binder systems and guide the design of polyurethanes for composite solid propellant applications.

Details

Title
Molecular Dynamic Simulations and Experiments Study on the Mechanical Properties of HTPE Binders
Author
Shi, La  VIAFID ORCID Logo  ; Fu, Xiaolong; Yang, Li; Wu, Shuxin; Meng, Saiqin; Wang, Jiangning
First page
5491
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756780776
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.