It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The stability of surrounding rock with bolt support depends on the stability within the reinforcement range. To understand the reinforcing mechanism of a rectangular roadway bolt fully and accurately, a quantitative method for evaluating the stability of the surrounding rock of a rectangular roadway must be developed. First, a roof beam model of a rectangular tunnel is established according to the deformation law of surrounding rock. Based on the elastic–plastic theory, the deflection calculation formula can be derived, and the ultimate load of the roof beam can be obtained under the plastic state without support. Second, based on the reinforcement effect of bolts, a model of a surrounding rock reinforcement body is established, the physical and mechanical properties of this body are deduced, and a method for evaluating the stability of surrounding rock is derived. Finally, by considering actual engineering cases, the theoretical calculation results of surrounding rock deformation are compared with the numerical simulation and field monitoring results. Moreover, the influence of different parameters of the bolt support on the mechanical characteristics and stability of reinforcement is investigated. The results show that the theoretical calculations approximate the numerical simulation and field monitoring values, thus verifying the rationality of the theory. The physical and mechanical properties and stability of the surrounding rock reinforcement body are considerably affected by changes in bolt length and spacing. The anchor design must apply the following principle: the bolt must either be long and sparsely spaced or short and densely spaced. The theory presented in this paper provides a relatively simple and fast quantitative calculation method for the study of the surrounding rock stability of bolt-supported rectangular roadways.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Xi’an University of Science and Technology, School of Architecture and Civil Engineering, Xi’an, China (GRID:grid.440720.5) (ISNI:0000 0004 1759 0801)
2 Xi’an Kedagaoxin University, School of Urban Construction, Xi’an, China (GRID:grid.440720.5)