It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Internet usage has increased social media over the past few years, significantly impacting public opinion on online social networks. Nowadays, these websites are considered the most appropriate place to express feelings and opinions. The popular social media site Twitter offers valuable insight into people’s thoughts. Throughout the conflict between Russia and Ukraine, people from all over the world have expressed their opinions. In this study, ”machine–learning” & ”deep–learning” techniques are used to understand people’s emotions and their views about this war are revealed. This study unveils a novel deep-learning approach that merges the best features of the sequence and transformer models while fixing their respective flaws. The model combines Roberta with ABSA(Aspect based sentiment analysis) and Long Short-Term Memory for sentiment analysis. A large dataset of geographically tagged tweets related to the Ukraine-Russia war was collected from Twitter. We analyzed this dataset using the Roberta-based sentiment model. In contrast, the Long Short-Term Memory model can effectively capture long-distance contextual semantics. The Robustly optimized BERT with ABSA approach maps words into a compact, meaningful word embedding space. The accuracy of the suggested hybrid model is 94.7%, which is higher than the accuracy of the state-of-the-art techniques.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer