Content area

Abstract

Single-cell RNA-sequencing (scRNA-seq) coupled with robust computational analysis facilitates the characterization of phenotypic heterogeneity within tumors. Current scRNA-seq analysis pipelines are capable of identifying a myriad of malignant and non-malignant cell subtypes from single-cell profiling of tumors. However, given the extent of intra-tumoral heterogeneity, it is challenging to assess the risk associated with individual malignant cell subpopulations, primarily due to the complexity of the cancer phenotype space and the lack of clinical annotations associated with tumor scRNA-seq studies. To this end, we introduce SCellBOW, a scRNA-seq analysis framework inspired by document embedding techniques from the domain of Natural Language Processing (NLP). SCellBOW is a novel computational approach that facilitates effective identification and high-quality visualization of single-cell subpopulations. We compared SCellBOW with existing best practice methods for its ability to precisely represent phenotypically divergent cell types across multiple scRNA-seq datasets, including our in-house generated human splenocyte and matched peripheral blood mononuclear cell (PBMC) dataset. For malignant cells, SCellBOW estimates the relative risk associated with each cluster and stratifies them based on their aggressiveness. This is achieved by simulating how the presence or absence of a specific malignant cell subpopulation influences disease prognosis. Using SCellBOW, we identified a hitherto unknown and pervasive AR−/NElow (androgen-receptor-negative, neuroendocrine-low) malignant subpopulation in metastatic prostate cancer with conspicuously high aggressiveness. Overall, the risk-stratification capabilities of SCellBOW hold promise for formulating tailored therapeutic interventions by identifying clinically relevant tumor subpopulations and their impact on prognosis.

Competing Interest Statement

The authors have declared no competing interest.

Footnotes

* New results added and figures modified.

Details

1009240
Title
SCellBOW: AI-Driven Tumor Risk Stratification from Single-Cell Transcriptomics Using Phenotype Algebra
Publication title
bioRxiv; Cold Spring Harbor
Publication year
2025
Publication date
Feb 18, 2025
Section
New Results
Publisher
Cold Spring Harbor Laboratory Press
Source
BioRxiv
Place of publication
Cold Spring Harbor
Country of publication
United States
University/institution
Cold Spring Harbor Laboratory Press
Publication subject
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Milestone dates
2022-12-30 (Version 1); 2023-05-29 (Version 2); 2024-04-01 (Version 3)
ProQuest document ID
2759430157
Document URL
https://www.proquest.com/working-papers/scellbow-ai-driven-tumor-risk-stratification/docview/2759430157/se-2?accountid=208611
Copyright
© 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-02-19
Database
ProQuest One Academic