Abstract

Although the primary protein sequence of ubiquitin (Ub) is extremely stable over evolutionary time, it is highly tolerant to mutation during selection experiments performed in the laboratory. We have proposed that this discrepancy results from the difference between fitness under laboratory culture conditions and the selective pressures in changing environments over evolutionary timescales. Building on our previous work (Mavor et al., 2016), we used deep mutational scanning to determine how twelve new chemicals (3-Amino-1,2,4-triazole, 5-fluorocytosine, Amphotericin B, CaCl2, Cerulenin, Cobalt Acetate, Menadione, Nickel Chloride, p-Fluorophenylalanine, Rapamycin, Tamoxifen, and Tunicamycin) reveal novel mutational sensitivities of ubiquitin residues. Collectively, our experiments have identified eight new sensitizing conditions for Lys63 and uncovered a sensitizing condition for every position in Ub except Ser57 and Gln62. By determining the ubiquitin fitness landscape under different chemical constraints, our work helps to resolve the inconsistencies between deep mutational scanning experiments and sequence conservation over evolutionary timescales.

Details

Title
Extending chemical perturbations of the ubiquitin fitness landscape in a classroom setting reveals new constraints on sequence tolerance
Author
Mavor, David; Barlow, Kyle A; Asarnow, Daniel; Birman, Yuliya; Britain, Derek; Chen, Weilin; Green, Evan M; Kenner, Lillian R; Bruk Mensa; Morinishi, Leanna S; Nelson, Charlotte A; Poss, Erin M; Suresh, Pooja; Tian, Ruilin; Taylor Arhar; Ary, Beatrice E; Bauer, David P; Bergman, Ian D; Brunetti, Rachel M; Chio, Cynthia M; Dai, Shizhong A; Dickinson, Miles S; Elledge, Susanna K; Helsell, Cole V M; Hendel, Nathan L; Kang, Emily; Kern, Nadja; Khoroshkin, Matvei S; Kirkemo, Lisa L; Lewis, Greyson R; Lou, Kevin; Marin, Wesley M; Maxwell, Alison M; McTigue, Peter F; Myers-Turnbull, Douglas; Nagy, Tamas L; Natale, Andrew M; Oltion, Keely; Pourmal, Sergei; Reder, Gabriel K; Rettko, Nicholas J; Rohweder, Peter J; Schwarz, Daniel M C; Tan, Sophia K; Thomas, Paul V; Tibble, Ryan W; Town, Jason P; Tsai, Mary K; Ugur, Fatima S; Wassarman, Douglas R; Wolff, Alexander M; Wu, Taia S; Bogdanoff, Derek; Li, Jennifer; Thorn, Kurt S; O'Conchúir, Shane; Swaney, Danielle L; Chow, Eric D; Madhani, Hiten D; Redding, Sy; Bolon, Daniel N; Kortemme, Tanja; DeRisi, Joseph L; Kampmann, Martin; Fraser, James S  VIAFID ORCID Logo 
Section
RESEARCH ARTICLES
Publication year
2018
Publication date
2018
e-ISSN
20466390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2760674560
Copyright
© 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.