Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Worldwide gastrointestinal (GI) malignancies account for about 25% of the global cancer incidence. For some malignancies, screening programs, such as routine colon cancer screenings, have largely aided in the early diagnosis of those at risk. However, even after diagnosis, many GI malignancies lack robust biomarkers to serve as definitive staging and prognostic tools to aid in clinical decision-making. Radiomics uses high-throughput data to extract various features from medical images with the potential to aid personalized precision medicine. Machine learning is a technique for analyzing and predicting by learning from sample data, finding patterns in it, and applying it to new data. We reviewed the fundamental concepts of radiomics such as imaging data acquisition, lesion segmentation, feature design, and interpretation specific to GI cancer studies and assessed the clinical applications of radiomics and machine learning in diagnosis, staging, evaluation of tumor prognosis, and treatment response.

Abstract

Gastrointestinal (GI) cancers, consisting of a wide spectrum of pathologies, have become a prominent health issue globally. Despite medical imaging playing a crucial role in the clinical workflow of cancers, standard evaluation of different imaging modalities may provide limited information. Accurate tumor detection, characterization, and monitoring remain a challenge. Progress in quantitative imaging analysis techniques resulted in ”radiomics”, a promising methodical tool that helps to personalize diagnosis and treatment optimization. Radiomics, a sub-field of computer vision analysis, is a bourgeoning area of interest, especially in this era of precision medicine. In the field of oncology, radiomics has been described as a tool to aid in the diagnosis, classification, and categorization of malignancies and to predict outcomes using various endpoints. In addition, machine learning is a technique for analyzing and predicting by learning from sample data, finding patterns in it, and applying it to new data. Machine learning has been increasingly applied in this field, where it is being studied in image diagnosis. This review assesses the current landscape of radiomics and methodological processes in GI cancers (including gastric, colorectal, liver, pancreatic, neuroendocrine, GI stromal, and rectal cancers). We explain in a stepwise fashion the process from data acquisition and curation to segmentation and feature extraction. Furthermore, the applications of radiomics for diagnosis, staging, assessment of tumor prognosis and treatment response according to different GI cancer types are explored. Finally, we discussed the existing challenges and limitations of radiomics in abdominal cancers and investigate future opportunities.

Details

Title
Role of Machine Learning in Precision Oncology: Applications in Gastrointestinal Cancers
Author
Tabari, Azadeh 1   VIAFID ORCID Logo  ; Chan, Shin Mei 2   VIAFID ORCID Logo  ; Omar Mustafa Fathy Omar 3 ; Iqbal, Shams I 1 ; Gee, Michael S 1 ; Daye, Dania 1 

 Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA 
 Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06510, USA 
 Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA 
First page
63
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761098342
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.