Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the application of new energy technology, hybrid agricultural machinery has been developed. This article designs a hybrid tractor energy management method to solve the problem of high energy consumption caused by significant load fluctuation of the tractor in field operation. This article first analyzes the characteristics of the hydrogen fuel cell, power battery, and ultracapacitor and designs a hybrid energy system for the tractor. Second, the energy management strategy (EMS) of multi-layer decoupling control based on the Haar wavelet and logic rule is designed to realize the multi-layer decoupling of high-frequency, low-frequency, and steady-state signals of load demand power. Then, the EMS redistributes the decoupled power signals to each energy source. Finally, a hardware-in-loop simulation experiment was carried out through the model. The results show that, compared with single-layer control strategies such as fuzzy control and power-following control, the multi-layer control strategy can allocate the demand power more reasonably, and the efficiency of the hydrogen fuel cell is the highest. The average efficiency of the hydrogen fuel cell was increased by 2.87% and 1.2%, respectively. Furthermore, the equivalent hydrogen consumption of the tractor was reduced by 17.06% and 5.41%, respectively, within the experimental cycle. It is shown that the multi-layer control strategy considering power fluctuation can improve the vehicle economy based on meeting the power demanded by the whole vehicle load.

Details

Title
Energy Management Strategy of Hydrogen Fuel Cell/Battery/Ultracapacitor Hybrid Tractor Based on Efficiency Optimization
Author
Xu, Wenxiang 1 ; Liu, Mengnan 2 ; Xu, Liyou 1 ; Zhang, Shuai 1 

 College of Vehicle and Traffic Engineering, Henan University of Science and Technology, Luoyang 471003, China 
 College of Vehicle and Traffic Engineering, Henan University of Science and Technology, Luoyang 471003, China; Luoyang Tractor Research Institute Co., Ltd., Luoyang 471003, China 
First page
151
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761137184
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.