Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Antioxidants are molecules that can prevent the harmful effects of oxygen, help capture and neutralize free radicals, and thus eliminate the damage of free radicals to the human body. Persimmon tannin (PT) has excellent antioxidant activity, which is closely related to its molecular structure. We report here a comparative study of four characteristic structural units from PT (epicatechin gallate (ECG), epigallocatechin gallate (EGCG), A−type linked ECG dimer (A−ECG dimer), A−type linked EGCG dimer (A−EGCG dimer)) to explore the structure–activity relationship by using the density functional theory. Based on the antioxidation mechanism of hydrogen atom transfer, the most favorable active site for each molecule exerts antioxidant activity is determined. The structural parameters, molecular electrostatic potential, and frontier molecular orbital indicate that the key active sites are located on the phenolic hydroxyl group of the B ring for ECG and EGCG monomers, and the key active sites of the two dimers are located on the phenolic hydroxyl groups of the A and D’ rings. The natural bond orbital and bond dissociation energy of the phenolic hydroxyl hydrogen atom show that the C11−OH in the ECG monomer and the C12−OH in the EGCG monomer are the most preferential sites, respectively. The most active site of the two A−linked dimers is likely located on the D’ ring C20′ phenolic hydroxyl group. Based on computational analysis of quantum chemical parameters, the A−ECG dimer is a more potent antioxidant than the A−EGCG dimer, ECG, and EGCG. This computational analysis provides the structure–activity relationship of the four characteristic units which will contribute to the development of the application of PT antioxidants in the future.

Details

Title
Computational Analysis on Antioxidant Activity of Four Characteristic Structural Units from Persimmon Tannin
Author
Wang, Zhongmin 1   VIAFID ORCID Logo  ; Liu, Zhigao 2 ; Wu, Chenxi 1 ; Liu, Songlin 2 ; Wang, Dianhui 2   VIAFID ORCID Logo  ; Hu, Chaohao 2 ; Chen, Tao 2   VIAFID ORCID Logo  ; Ran, Zhaojin 1 ; Gan, Weijiang 1 ; Li, Guiyin 3   VIAFID ORCID Logo 

 Guangxi Academy of Sciences, Nanning 530007, China 
 School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China 
 College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China 
First page
320
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761190606
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.