Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Colorectal cancer (CRC) is a cancer-associated fibroblast, CAF-rich tumor. CAF promotes cancer cell proliferation, metastasis, drug resistance via secretes soluble factors, and extracellular matrices which leads to dense stroma, a major barrier for drug delivery. Resveratrol (RES) is a polyphenolic compound, has several pharmacologic functions including anti-inflammation and anticancer effects. Considering tumor microenvironment of CRC, resveratrol-loaded liposome (L-RES) was synthesized and employed to inhibit CAF functions. The L-RES was synthesized by thin-film hydration method. The cytotoxicity of L-RES was evaluated using MTT assay. Effect of L-RES treated CAF on tumor spheroid growth was performed. Cell invasion was determined using spheroid invasion assay. The effect of L-RES on 5-fluorouracil (5-FU) sensitivity of CRC cells was determined in co-cultured tumor spheroids. Subtoxic dose of L-RES was selected to study possible inhibiting CAF functions. Decreased CAF markers, α-SMA and IL-6 levels, were observed in L-RES treated activated fibroblast. Interestingly, the activated fibroblast promoted invasive ability and drug resistance of CRC cells in co-culture condition of both 2D and 3D cultures and was attenuated by L-RES treatment in the activated fibroblast. Therefore, L-RES provides a promising drug delivery strategy for CRC treatment by disrupting the crosstalk between CRC cells and CAF.

Details

Title
Resveratrol Loaded Liposomes Disrupt Cancer Associated Fibroblast Communications within the Tumor Microenvironment to Inhibit Colorectal Cancer Aggressiveness
Author
Paweena Dana 1 ; Thumrongsiri, Nutthanit 1 ; Tanyapanyachon, Prattana 1 ; Chonniyom, Walailuk 1 ; Punnakitikashem, Primana 2   VIAFID ORCID Logo  ; Saengkrit, Nattika 1 

 National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand 
 Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand; Research Network NANOTEC-Mahidol University in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand 
First page
107
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761193336
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.