Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Gene silencing is an important biological strategy for studying gene functions, exploring disease mechanisms and developing therapeutics. 8–17 DNAzyme is of great potential for gene silencing, due to its higher RNA-cleaving activity. However, it is not generally used in practice, due to its divalent cation dependence and poor understanding of its cellular mechanisms. To address these issues, we have explored its activity in vitro and in cells and found that it can cleave RNA substrates under the simulated physiological conditions, and its gene-silencing activity is additionally enhanced by its RNase H compatibility, offering both cleavage and antisense activities in cells. Further, chemical modifications can facilitate its stability, substrate binding affinity and gene-silencing activity. Our research results suggest that this DNAzyme can demonstrate high levels of activities for both actions in cells, making it a useful tool for exploring biomedical applications.

Details

Title
8–17 DNAzyme Silencing Gene Expression in Cells via Cleavage and Antisense
Author
Zhou, Zhongchun 1   VIAFID ORCID Logo  ; Sun, Wen 1 ; Huang, Zhen 2 

 Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China 
 Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; SeNA Research Institute & Szostak-CDHT Large Nucleic Acids Institute, Chengdu 610041, China 
First page
286
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761196627
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.