Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the southeastern US, Atlanta is always the focus of attention, despite the rapid expansion of small and medium-sized cities (SMSCs) in the region. Clearly, larger cities have more people, resulting in more loss during disasters. However, SMSCs also face natural calamities and must be made robust and sustainable. Keeping this in mind, this study chooses to focus on ten SMSCs in Alabama (Population > 40,000) which have encountered at least a 6% increase in population size between 1990 and 2020, out of which two large cities (Population > 180,000) which experienced loss during the same time. This paper examines the change in urban built-up area between 1990 and 2020 using the random forest algorithm in Google Earth Engine (GEE) and estimates future 2050 urban expansion scenarios using the Cellular Automata (CA) Markov model in TerrSet’s Land Change Modeler (LCM). The results revealed urban built-up areas grew rapidly from 1990 to 2020, with some cities doubling or tripling in size due to population growth. The future growth model predicted growth for most cities and urban expansion along transportation networks. The outcome of this research showcases the importance of proper planning and building sustainably in SMSCs for future natural disaster events.

Details

Title
Mapping and Predicting Land Cover Changes of Small and Medium Size Cities in Alabama Using Machine Learning Techniques
Author
Shrestha, Megha; Mitra, Chandana; Rahman, Mahjabin; Marzen, Luke
First page
106
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761199142
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.