Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Fine-resolution land cover (LC) products are critical for studies of urban planning, global climate change, the Earth’s energy balance, and the geochemical cycle as fundamental geospatial data products. It is important and urgent to evaluate the performance of the updated global land cover maps. In this study, three widely used LC maps with 30 m spatial resolution (FROM-GLC30-2020, GLC_FCS30, and GlobeLand30) published around 2020 were evaluated in terms of their degree of consistency and accuracy metrics. First, we compared their similarities and difference in the area ratio and spatial patterns over different land cover types. Second, the sample and response protocol was proposed and validation samples were collected. Based on this, the overall accuracy, producer’s accuracy, and user’s accuracy were analyzed. The results revealed that: (1) the consistent areas of the three maps accounted for 65.96% of the total area and that two maps exceeded 75% of it. (2) The dominant land cover types, bare land and grassland, were the most consistent land cover types across the three products. In contrast, the spatial inconsistency of the wetland, shrubland, and built-up areas were relatively high, with the disagreement mainly occurring in the heterogeneous regions. (3) The overall accuracy of the GLC_FCS30 map was the highest with a value of 87.07%, which was followed by GlobeLand30 (85.69%) and FROM-GLC30 (83.49%). Overall, all three of the LC maps were found to be consistent and have a good performance in classification in the arid regions, but their ability to accurately classify specific types varied.

Details

Title
Contrastive Analysis and Accuracy Assessment of Three Global 30 m Land Cover Maps Circa 2020 in Arid Land
Author
Bie, Qiang 1   VIAFID ORCID Logo  ; Shi, Ying 2 ; Li, Xinzhang 2 ; Wang, Yueju 2 

 Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China 
 Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China 
First page
741
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761213302
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.