It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Most of the anthropic pollution arriving to seas and oceans is carried by rivers, leading to a dramatic impact on the aquatic flora and fauna. Hence, several strategies have already been considered to reduce the use of plastic (and non biodegradable) objects, fostering recycling, detect litter in the environment, and catch it. This work aims at implementing a litter detection approach usable also in urban areas, hence considering a mini-UAV (Unmanned Aerial Vehicle) in order to reduce the issues related to flight restrictions. The implemented strategy exploits a high resolution map of the area of interest, a properly trained deep learning litter object detector, and a vision based localization system, which allows to remarkably reduce the positioning error of the UAV navigation system, in order to provide estimates of the litter object positions with an accuracy at decimeter level for objects not too far from locations recognizable in the map.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Dept. of Civil and Environmental Engineering, University of Florence, via di Santa Marta 3, Florence 50139, Italy; Dept. of Civil and Environmental Engineering, University of Florence, via di Santa Marta 3, Florence 50139, Italy