Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Leaf water content (LWC) is one of the important indicators of crop health. It plays an important role in the physiological process of leaves, participates in almost all physiological processes of crops, and is of great significance to the survival and growth of crops. Based on the hyperspectral (350–1350 nm) and LWC data (jointing, booting, flowering, and filling periods) of winter wheat in 2020 and 2021, this work proposed to transform and process the hyperspectral data by adopting fractional order differential and continuous wavelet transform, and took a differential spectrum, wavelet coefficients, and mixed variables (differential spectrum and wavelet coefficients) as input variables of the model and adopted Gaussian process regression (GPR), classification and regression decision tree (CART), and artificial neural network (ANN) methods to estimate the LWC of wheat in different growth periods. The results indicated that fractional differential and continuous wavelet transform could highlight the spectral characteristics of winter wheat canopy and improve its correlation with LWC. The three model variables had the best estimation effect on LWC in the flowering period, and the average values of R2 were 0.86 and 0.87 in modeling and verification, which indicated that the flowering period could be used as the best estimation period for LWC. Compared with the differential spectrum and wavelet coefficients, LWC estimation based on mixed variables performed best. The average values of R2 in modeling and verification were 0.78 and 0.79. Among them, the ANN model had the highest estimation accuracy, and the R2 in modeling and verification could reach 0.92 and 0.91. This showed that fractional differential and continuous wavelet transform could effectively promote the sensitivity of spectral information to LWC and enhance the prediction ability and stability of wheat LWC. The outcomes of the present study have the potential to provide new ideas for the water monitoring of crops.

Details

Title
Hyperspectral Estimation of Winter Wheat Leaf Water Content Based on Fractional Order Differentiation and Continuous Wavelet Transform
Author
Li, Changchun 1 ; Xiao, Zhen 1   VIAFID ORCID Logo  ; Liu, Yanghua 2 ; Meng, Xiaopeng 1 ; Li, Xinyan 1 ; Wang, Xin 1 ; Li, Yafeng 1 ; Zhao, Chenyi 1 ; Ren, Lipeng 1 ; Chen, Yang 1 ; Jiao, Yinghua 3 

 School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China 
 Piesat Information Technology Co., Ltd., Beijing 100095, China 
 Shandong Provincial Institute of Land Surveying and Mapping, Jinan 250102, China 
First page
56
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767112910
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.