Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The diagnosis of blade crack faults is critical to ensuring the safety of turbomachinery. Blade tip timing (BTT) is a non-contact vibration displacement measurement technique, which has been extensively studied for blade vibration condition monitoring recently. The fault diagnosis methods based on deep learning can be summarized as studying the internal logical relationship of data, automatically mining features, and intelligently identifying faults. This research proposes a crack fault diagnostic method based on BTT measurement data and convolutional neural networks (CNNs) for the crack fault detection of blades. There are two main aspects: the numerical analysis of the rotating blade crack fault diagnosis and the experimental research in rotating blade crack fault diagnosis. The results show that the method outperforms many other traditional machine learning models in both numerical models and tests for diagnosing the depth and location of blade cracks. The findings of this study contribute to the real-time online crack fault diagnosis of blades.

Details

Title
Blade Crack Diagnosis Based on Blade Tip Timing and Convolution Neural Networks
Author
Zhu, Guangya 1 ; Wang, Chongyu 1 ; Zhao, Wei 2 ; Xie, Yonghui 2 ; Guo, Ding 1 ; Zhang, Di 1   VIAFID ORCID Logo 

 MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China 
 School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China 
First page
1102
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767172903
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.